United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI

نویسندگان

چکیده

Simultaneous segmentation and detection of liver tumors (hemangioma hepatocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic resonance imaging (NCMRI) are crucial for the clinical diagnosis. However, it is still a challenging task due to: (1) HCC information on NCMRI insufficient makes extraction feature difficult; (2) diverse characteristics in causes fusion selection (3) no specific between hemangioma cause difficult. In this study, we propose united adversarial learning framework (UAL) simultaneous NCMRI. The UAL first utilizes multi-view aware encoder to extract tumor detection. encoder, novel edge dissimilarity pyramid module designed facilitate complementary extraction. Secondly, newly channel used fuse make decision selection. Then, proposed mechanism coordinate sharing with padding integrates multi-task so that enables perform one discriminator. Lastly, an innovative multi-phase radiomics guided discriminator exploits clear improve performance via strategy. validated corresponding (i.e. T1FS pre-contrast MRI, T2FS DWI) three phases contrast-enhanced MRI 255 subjects. experiments show gains high dice similarity coefficient 83.63%, pixel accuracy 97.75%, intersection-over-union 81.30%, sensitivity 92.13%, specificity 93.75%, 92.94%, which demonstrate has great potential diagnosis tumors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Synthesis Learning Enables Segmentation Without Target Modality Ground Truth

A lack of generalizability is one key limitation of deep learning based segmentation. Typically, one manually labels new training images when segmenting organs in different imaging modalities or segmenting abnormal organs from distinct disease cohorts. The manual efforts can be alleviated if one is able to reuse manual labels from one modality (e.g., MRI) to train a segmentation network for a n...

متن کامل

Automatic Liver Segmentation in Contrast-enhanced MRI

A fully automated method for liver segmentation in contrast enhanced abdominal MRI scans is presented. Liver shape and volume are obtained utilizing a context based approach. Compared to manual segmentation, the obtained liver volumes differ less than 10%. The mean sensitivity of 0.92 is comparable to other published liver segmentation methods.

متن کامل

Adversarial Multi-Criteria Learning for Chinese Word Segmentation

Different linguistic perspectives causes many diverse segmentation criteria for Chinese word segmentation (CWS). Most existingmethods focus on improve the performance for each single criterion. However, it is interesting to exploit these different criteria and mining their common underlying knowledge. In this paper, we propose adversarial multi-criteria learning for CWS by integrating shared kn...

متن کامل

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

Contrast Media for Liver MRI

Overview: In this lecture, I will provide an overview of the different available gadolinium-based contrast agents, with specific attention on dynamic contrast enhanced imaging and delayed hepatobiliary phase imaging. The dual blood supply of the liver will be reviewed and its importance on understanding the detection and characterization of focal liver lesions. The behavior of the dual blood su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Medical Image Analysis

سال: 2021

ISSN: ['1361-8423', '1361-8431', '1361-8415']

DOI: https://doi.org/10.1016/j.media.2021.102154